New Onset Refractory Status Epilepticus (NORSE)

Olga Taraschenko, MD, PhD
Assistant Professor
Director, Comprehensive Epilepsy Program
Director, Autoimmune Seizure Laboratory
University of Nebraska Medical Center
Chief of Epilepsy and Director of MEG, Nebraska Medicine

ACNS Course, February 11, 2021
Disclosures

• Seed grant (AES-NORSE Institute/Daniel Raymond Wong Neurology Research Fund) to develop a nanoparticle-bound anakinra for the treatment of NORSE

• Junior Investigator Research Award (AES) to study the role of inflammation in autoimmune seizures
Learning Objectives

• Discuss the definition, most common etiologies, and existing pathophysiological hypotheses of NORSE
• Review the most common clinical and electrographic features of autoimmune encephalitis syndromes relevant to NORSE
• Identify the ictal, interictal, and other EEG patterns in NORSE/FIRES
• Summarize the current treatment approaches in NORSE/FIRES
Status epilepticus (SE)

Refractory SE (RSE): failure of treatment with ≥ two anticonvulsants

Super refractory SE (SRSE): failure of treatment with anesthetics ≥ 24 h

Prolonged refractory SE (PRSE): failure of treatment without anesthetics ≥ 7 days

Prolonged super refractory SE (PSRSE): failure of treatment with anesthetics ≥ 7 days

Hirsch et al., Epilepsia 2018
Definition of NORSE

- Clinical presentation of an acute RSE without clear active structural, toxic or metabolic causes
- Includes patients with resolved epilepsy secondary to the structural brain lesion
- Includes autoimmune and infectious etiologies
- Febrile infection-related epilepsy syndrome (FIRES) requires an antecedent fever within 1-14 days in any age group
- Infantile hemiconvulsion-hemiplegia and epilepsy syndrome (IHHE) requires a unilateral motor RSE and persistent high-grade fever in patients <2 years old

Hirsch et al., Epilepsia 2018
The evolution of our knowledge

Epidemiology

• Over 400 cases in adults and children
• Incidence
 o ~ 7% of SE cases (or 1/100,000 per year)
 o ~ 20% of RSE cases
 o ~ 50-70% of SRSE cases
• Sex distribution
 o adults: F > M
 o children: M > F
• Mortality
 o adults: 16-27%
 o children: 12%

Gaspard et al., *Epilepsia* 2018; Sculier and Gaspard *Seizure* 2019; Speccio and Pietrafusa *Dev Med Child Neurol*. 2020
Proposed mechanisms of seizures in NORSE

Polymorphism in the SCN2A and IL-1R antagonist genes

- Dysfunction of inflammasome NLRP3
- Deficient activity of the endogenous antagonist of the IL-1R

The role of neurogenic inflammation in NORSE

Evidence for intrathecal and systemic inflammation

- Increased CSF levels of IL-6, CXCL 9-11 in FIRES but not in other SE syndromes (Kothur et al., Epilepsia 2019)
- Upregulated CSF IL-6 and serum IL-6, IL-1β and endogenous IL-1 receptor antagonist in FIRES (June et al., Ann Neurol 2018; Clarkson et al., Ann Neurol 2019)

Dysfunction of inflammasome NLRP3

- Normal function: mediates recruitment of and activation of caspase and release of IL-1β and IL-18
- Dysfunction: excessive production of inflammatory cytokines
Known etiologies of NORSE/FIRES

Cryptogenic cases:
- adults ~ 52%
- pediatric ~ 58%

Pediatric cohorts (n = 77, 40)
- autoimmune: 8-35% (anti-VGKC, anti-GAD)
- viral: 20%
- other: 15%

Clinically recognizable syndromes associated with NORSE

- Anti-NMDA receptor encephalitis

- Limbic encephalitis (LE) with anti-leucine-rich glioma-inactivated 1 (LGI1) antibodies

- Autoimmune encephalitis (AE) with anti-GABA$_A$ or GABA$_B$ receptor antibodies

Husari and Dubey Neurotherapeutics 2019
Anti-NMDA receptor encephalitis

- Multifocal CNS syndrome
- Number of reported cases ~ 2,000
- Constitutes ~ 12-15% of NORSE etiologies
- New-onset seizures are present in 78-86%
- Seizures as a first symptom are more common in males and children
 - adults: generalized > focal
 - children: focal >> generalized
- SE develops in 7-8% of adults and children

Extreme delta brush

• Found in 30% of adult and 53% of pediatric patients with anti-NMDAR encephalitis

• In adults is associated with prolonged recovery and EEG monitoring

• May be related to altered modulation of NMDAR-mediated currents

Schmitt et al., Neurology 2012; Haberlandt et al., Eur J Paediatr Neurol 2017
Extreme delta brush

Schmitt et al., Neurology 2012; Haberlandt et al., Eur J Paediatr Neurol 2017
Evolution of generalized EEG patterns in anti-NMDAR encephalitis

Schmitt et al., Neurology 2012; Vogrig et al., Epilepsia 2019; Irani et al., Brain 2010
In children unilateral discharges may carry more favorable prognosis than diffuse patterns

Gitiaux et al., Clin Neurophysiol 2013
AE associated with anti-leucine glioma inactivated 1 (LGI1) protein

- Limbic encephalitis
- Number of reported cases ~250
- Contributes to ~6% of NORSE cases
- Seizures in 50-90% of patients
- Semiology: myoclonic, dystonic, sensory, GTCs
 - facial brachial dystonic seizures (FBDS)
 - unilateral piloerection
- SE in 22% of cases

Facial brachial dystonic seizures (FBDS)

- Present in 15-50% of patients with anti-LGI1 antibodies
- Unilateral, brief, frequent (median 50/day)
- Associated symptoms: loss of awareness (64%), vocalizations (24%)

van Sonderen et al., Neurology 2016; Irani et al, Ann Neurol 2011
Representative EEG during FBDS: focal rhythmic activity

Ictal EEG changes occur in ~ 5% of FBDSs

Irani et al., *Ann Neurol* 2011; Navarro et al., *Brain* 2016; Aurangzeb et al., *Seizure* 2017
Representative EEG during FBDS: diffuse attenuation

Ictal EEG changes occur in ~ 5% of FBDSs

Wang et al., *Front Neurol* 2020
Ictal piloerection in anti-LGI1 encephalitis
Anti-GABAB receptor encephalitis

• Limbic encephalitis with ataxia (9%)
• Number of reported cases ~90
• Seizures in 84-88% (refractory, temporal lobe predominant)
• SE
 o on presentation: 9.6%
 o during acute phase: 16-62%
• Chronic epilepsy: 29%
• Paraneoplastic etiology in the majority of patients
• No survivals among patients who did not receive immunotherapy, chemotherapy or their combination

Lancaster et al, Lancet Neurol, 2010; Höftberger et al., Neurology 2013; Boronat et al., Neurology 2011; McKay et al., Neurol Neurochir Pol 2019; Frangaj and Fan, Neuropharmacology 2018; Wang et al., Front Neurol 2020
Anti-GABAA receptor encephalitis

- Antibodies against α1, β3 and γ2 subunits cause reduced surface receptor density \textit{in vitro}
- Early refractory seizures (88%) with crescendo pattern
- SE of any type: 33-45%
- Characteristic non-enhancing multifocal cortical-subcortical lesions
- Mortality: 20%
- Full recovery: 20%

Petit-Pedrol et al., \textit{Lancet Neurol} 2014; Pettingill et al. \textit{Neurology} 2015; Spatola et al., \textit{Neurology} 2017; O’Connor et al., \textit{Neurol Neuroimmunol Neuroinflamm} 2019; Husari and Dubey \textit{Neurotherapeutics} 2019
Summary of ictal findings in AE

• Extreme delta brush in anti-NMDA receptor encephalitis
• No other pathognomonic EEG features
• FBDS is associated with anti-LGI1 antibodies
• Refractory seizures manifest early in anti-GABAA and GABAB-receptor encephalitis
Cryptogenic NORSE (C-NORSE)
Epidemiology and outcomes of C-NORSE

- Constitutes ~ 52-58% of all NORSE cases
- Mortality: 12-30%
- Rapid development of brain atrophy
- Survivals: > 60% with refractory epilepsy and 30% with severe cognitive deficits
- Guidelines for the management of C-NORSE are not defined
Semiology of seizures in C-NORSE/FIRES

Specchio and Pietrafusa, Dev Med Child Neurol. 2020; Serino et al., Neuropsychiatr Dis Treat 2019
Ictal EEG findings in C-NORSE/FIRES

Specchio and Pietrafusa, *Dev Med Child Neurol* 2020
Can C-NORSE be predicted early?

<table>
<thead>
<tr>
<th>Clinical feature</th>
<th>Proportion of patients, %</th>
<th>Cryptogenic (n = 11)</th>
<th>Anti-NMDAR IgG-positive (n = 32)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prodromal fever</td>
<td></td>
<td>91</td>
<td>38</td>
</tr>
<tr>
<td>Encephalopathy prior to SE</td>
<td></td>
<td>0</td>
<td>94</td>
</tr>
<tr>
<td>Abnormal movements</td>
<td></td>
<td>27</td>
<td>94</td>
</tr>
<tr>
<td>Generalized or NC refractory SE</td>
<td></td>
<td>100</td>
<td>19</td>
</tr>
<tr>
<td>Good outcome (mRS 0-2)</td>
<td></td>
<td>27%</td>
<td>72%</td>
</tr>
</tbody>
</table>

Clinically-based score to predict C-NORSE *

<table>
<thead>
<tr>
<th>Clinical feature</th>
<th>Score</th>
</tr>
</thead>
<tbody>
<tr>
<td>New onset RSE</td>
<td>1</td>
</tr>
<tr>
<td>Previously healthy individual</td>
<td>1</td>
</tr>
<tr>
<td>Presence of prodromal high fever of unknown origin before the onset of SE</td>
<td>1</td>
</tr>
<tr>
<td>Absence of prodromal psychobehavioral or memory alterations</td>
<td>1</td>
</tr>
<tr>
<td>Absence of orofacial-limb dyskinesia</td>
<td>1</td>
</tr>
<tr>
<td>Symmetric DWI or T2/FLAIR hyperintensities</td>
<td>1</td>
</tr>
<tr>
<td>Total</td>
<td>6</td>
</tr>
</tbody>
</table>

Sensitivity: 94%
Specificity: 100%

* does not apply to NCSE

Iizuka et al., *Neurol Neuroimmunol Neuroinflamm* 2017; Yanagida et al *Neurol Neuroimmunol Neuroinflamm* 2020: Iizuka and Yanagida *Clin & Experimental Neuroimmunol* 2020
Ictal and interictal findings in NORSE/FIRES
Ictal EEG findings in NORSE

Pediatric cohort (n=40)
- all seizures on EEG: 68%
- generalized: 15%
- focal: 85%

Gaspard et al., Neurology 2015; Husari et al., Pediatr Crit Care Med 2020
Other EEG patterns in NORSE

- Periodic discharges: 72%
 - lateralized: 39%
 - bilateral independent: 24%
 - generalized: 22%
 - multifocal: 2%
- Epileptiform discharges
 - focal: 36%
 - frontotemporal: 66%
 - bilateral: 18%
 - multifocal: 37%
- No difference between the electrographic characteristics in patients with and without established etiology

Gradual evolution of seizures to SE in pediatric FIRES

- Orobuccal automatisms
- Head deviation with autonomic changes
- Oral clonus with hypersalivation

Farias-Moeller et al., Epilepsia 2017; Specchio and Pietrafusa, Dev Med Child Neurol 2020; Serino et al., Neuropsychiatr Dis Treat 2019
Ictal shifting in pediatric FIRES

Howell et al., *Epilepsia* 2012; Farias-Moeller et al., *Epilepsia* 2017; Mohammad et al., *Clin Neurophysiol* 2016
Focal fast activity at seizure onset in children with FIRES

Farias-Moeller et al., *Epilepsia* 2017; Specchio and Pietrafusa, *Dev Med Child Neurol* 2020
Summary of electro-clinical findings in NORSE/FIRES

• Clinical semiology and EEG are similar in NORSE with established etiology and C-NORSE
• Focal myoclonic seizures are prevalent in FIRES
• Interesting findings in FIRES:
 o gradual seizure evolution to RSE
 o ictal shifting
 o focal fast activity at ictal onset
Treatment of cryptogenic NORSE

<table>
<thead>
<tr>
<th>Therapeutic line</th>
<th>Specific treatments</th>
<th>Patients with improvement, % total (number of cases)</th>
<th>NORSE</th>
<th>FIRES</th>
</tr>
</thead>
<tbody>
<tr>
<td>First line</td>
<td>Steroids</td>
<td>38% (40)</td>
<td>17% (63)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>IVIG</td>
<td>30% (17)</td>
<td>5% (94)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Plasma exchange</td>
<td>40% (15)</td>
<td>11% (18)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Second line</td>
<td>Rituximab</td>
<td>0% (5+5)</td>
<td>33% (3)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Cyclophosphamide</td>
<td>0% (5)</td>
<td>0% (1)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Interleukin receptor</td>
<td>Anakinra</td>
<td>None</td>
<td>48% (26)</td>
<td></td>
</tr>
<tr>
<td>antagonists</td>
<td>Canakinumab</td>
<td></td>
<td>100% (1)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Tocilizumab</td>
<td>86% (7)</td>
<td>None</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Other</td>
<td>Cannabidiol</td>
<td>100% (5)</td>
<td>90% (7)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Bortezomib</td>
<td>44% (13+34)</td>
<td>None</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ketamine</td>
<td>67% (12)</td>
<td>100% (2)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ketogenic diet</td>
<td>40% (2)</td>
<td>59% (35+9)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Hypothermia</td>
<td></td>
<td>100% (2)</td>
<td></td>
</tr>
</tbody>
</table>

Treatment of FIRES

• Favorable outcomes in FIRES were associated with
 o using ketogenic diet in acute or chronic phase
 o using steroids in acute or chronic phase
 o living in Japan or China

• No association was found for the use of IVIG or plasma exchange and better outcomes

Kessi et al., Seizure 2020
Updates on the NORSE initiatives

• Prospective Observational Study (NORSE Institute/Yale University)
 o ongoing since June 2020
 o enrolled 40 patients and stored their biological specimens and clinical data

• NORSE Family Registry: international online registry that collects demographic, geographic, and outcome data for persons affected by NORSE/FIRES
 http://www.norseinstitute.org/norse-registry-2

• Development of a consensus protocol for investigation, treatment, and research sampling in NORSE/FIRES using the Delphi approach
 o international facilitator group has developed a survey
 o first survey was sent to 48 experts worldwide (January 2021)
Ultimate goals *in improving care* for NORSE

- Refine the clinical criteria
- Establish the pathogenies of seizures in NORSE
- Improve the early diagnosis
- Develop international collaboration
- Establish interventional trials